Design of RNAi reagents for invertebrate model organisms and human disease vectors.
نویسندگان
چکیده
RNAi has become a very versatile tool to silence gene expression in a variety of organisms, in particular when classical genetic methods are missing. However, the application of this method in functional studies has raised new challenges in order to design RNAi reagents that minimize false positives and false negatives. Because the performance of reagents cannot be validated on a genome-wide scale, improved computational methods are required that consider experimentally derived quality measures. In this chapter, we describe computational methods for the design of RNAi reagents for invertebrate model organisms and human disease vectors, such as Anopheles. We describe procedures for designing short and long double-stranded RNAs for single genes, and evaluate their predicted specificity and efficiency. Using a bioinformatics pipeline we also describe how to design a genome-wide RNAi library for Anopheles gambiae.
منابع مشابه
E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computationa...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملRNAi screening: new approaches, understandings, and organisms.
RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from th...
متن کاملDesign and evaluation of genome-wide libraries for RNAi screens
This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT RNA interference screens have enabled the systematic analysis of many biological processes in ...
متن کاملRNAiAtlas: a database for RNAi (siRNA) libraries and their specificity
Large-scale RNA interference (RNAi) experiments, especially the ones based on short-interfering RNA (siRNA) technology became increasingly popular over the past years. For such knock-down/screening purposes, different companies offer sets of oligos/reagents targeting the whole genome or a subset of it for various organisms. Obviously, the sequence (and structure) of the corresponding oligos is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 942 شماره
صفحات -
تاریخ انتشار 2013